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Abstract. The description of a quantum Brownian oscillator based on stochastic quantisa- 
tion is applied to the non-equilibrium relaxation process. The quantum fluctuation- 
dissipation theorem is derived in a form which relates only the thermal component of the 
fluctuations to the response function. In the zero-temperature limit, i t  is shown that the 
transient is described by processes related to the solution of the nonlinear Schrodinger 
equation. 

The linear response functions and the equilibrium fluctuations of a thermodynamic 
system are connected by the fluctuation-dissipation theorem (FDT). The physical 
meaning of the theorem is quite clear in classical statistical mechanics, where dissipation 
and fluctuations are both due to the interaction with the degrees of freedom of the 
environment. However, in the quantum case the interpretation is less straightforward, 
since the fluctuations cannot be ascribed just to the thermal bath, but also have an 
intrinsic origin which is not related in any way to dissipative effects. As a result, the 
correlation functions are not uniquely defined and the theorem takes different forms 
according to which definition is used: symmetrised, canonical (Kubo 1966) or normally 
ordered (Ford et a1 1965) correlation functions are related in as many different ways 
to the response functions. Ultimately, the differences in the form of the theorem should 
be ascribed to the different treatments of the zero-point fluctuations in the definition 
of the correlation functions, but the physical picture remains hidden in the formalism. 

Recently the quantum Brownian oscillator has been treated by means of stochastic 
quantisation (Ruggiero and Zannetti 1982). In the light of the previous considerations, 
it is then interesting to derive the FDT within the new framework. Indeed, it turns out 
that the stochastic treatment, although limited to the harmonic oscillator, yields the 
quantum FDT in a form whose physical meaning is transparent and quite instructive. 

In the stochastic formulation of quantum mechanics (Nelson 1966, 1967), the pure 
states of an isolated system are described by Markov random processes. This approach 
can be extended to the thermal equilibrium states by the introduction of non-Markovian 
processes. For the quantum Brownian oscillator in interaction with a thermal bath 
(the non-dissipative case has been treated by Guerra and Loffredo (1981)) one obtains 
a stochastic process x ( t )  which is the sum of two independent processes q ( t ) ,  ( ( r )  
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obeying the set of stochastic differential equations 

dq  = (P /  m) dt, 

d p  = -mw2q d t  - yp d t  +Jo dw, 

d[= - w l  dt +(h/m)l” dq ,  

where m, w are the mass and  the frequency of the oscillator. The processes q ( f )  and 
[ ( t )  may be regarded as the thermal and  the quantum fluctuations, respectively, since 
(1 a )  and  ( 1  b)  are identical to the classical Ornstein-Uhlenbeck equations, while (1 c) 
is the Nelson equation for the ground-state process of the isolated oscillator. The 
phenomenological friction and diffusion coefficient y and D satisfy the Einstein relation 
D = 2my/c(w) with 

C ( W )  = (ephw - I ) / ~ w  

p(x) = (p*mw2/2.rr)”’ exp(-$p*mw2x2) (3) 

(2) 

in order to have the stationary probability density 

with p* = ( 2 / h w )  tanh(phw/2). Finally, w( t), q( t) are two independent Wiener processes 
with expectations 

(dw) = ( d q )  = 0, (dw’) = (dq’) = dt. 

We remark, for future reference, that when the interaction with the bath is switched 
off ( y ,  D + 0), (1  a )  and (1 b )  become the deterministic equations of the classical oscillator 
and  the corresponding process x( t )  = q( t) + [( t) recovers Markovianity. In fact, this is 
the Nelson stochastic process associated to a Glauber coherent state for the quantum 
undamped oscillator (Ruggiero and Zannetti 1982). 

Since we have the explicit equations of motion, the derivation of the FDT is quite 
simple. Let us consider the relaxation process occurring when the system is initially 
prepared in a non-equilibrium state. This is realised by assuming that a constant force 
A, acting on the system for t < 0, is suddenly switched off at t = 0. Namely, for t < 0, 
the oscillator is in the stationary equilibrium state with probability density 

ph(x) = (p*mw2/2.rr)”’ exp[-$p*mw’(x -(X)h)’] (4) 

where (x)* = A/mw2 is the non-vanishing expectation value of the position. At t = 0, 
when A is set to zero, ph(x) becomes the non-equilibrium initial density of the transient 
governed by (1). Eventually, for large times the asymptotic equilibrium density in (3) 
is reached. 

We are interested in the response of x(t), which is characterised by the relaxation 
function 

@. , ( t )  = A(x(t))/A ( 5 )  

where A(x(t)) = ( ~ ( t ) )  - - (X(Z))~ ,  and denotes the average in the unperturbed equili- 
brium state. Now, from the definition of x ( t )  we have A(x(t)) = A(q(t)) +A([(?)). 
However, [(t) is the stationary Nelson process for the ground state, hence A ( [ ( t ) )  = 0, 
and ( 5 )  becomes 

@ A t )  = A(dt))/A. (6) 
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On the other hand, as remarked above, the thermal fluctuation q( t )  is an  Ornstein- 
Uhlenbeck process, which obeys the classical FDT (apart from a quantum correction 
in the prefactor) 

A(q( t ) ) /A  = c(w)Gqq(O (7 ) 

with Gqq(f)= (q(0)q(t))o.  Hence, inserting (7) into (6) we obtain the quantum FDT in 
the form 

@ A t )  = C(U)Gqq(f), (8) 

namely, the relaxation is related only to the thermal component of the fluctuations. 
It must be remarked that the above result is not of general validity, since the splitting 
of the fluctuations into a thermal and a quantum component holds for linear systems. 
However, this is the interesting case for the point we wish to make. In  fact, given that 
the quantum and the thermal fluctuations are statistically independent, the form (8) 
of the FDT is a direct manifestation of the different physical natures of quantum and  
thermal fluctuations, since, as is physically intuitive, the relaxation involves only the 
fluctuations which are actually responsible for the dissipation. 

Finally, let us consider the limit of zero temperature. Since limT,, D = 0, equations 
( I )  become 

dq  = ( p / m )  dt, (80) 

d p  = mw’q d t  - y p  dt, (86) 
d[= - w( d t  +(h/m)”’ dw, (8c) 

namely, the classical-like component of the motion undergoes friction without diffusion. 
Therefore, the process x ( t )  = q ( t )  + [ ( t )  is Markovian and  obeys the stochastic differen- 
tial equation 

d x ( t ) = [ p ( t ) / m - w ( x ( t ) - q ( t ) ) ] d t + ( h / m ) ” ’ d w .  (9) 

The corresponding quantum state, which can be regarded as the generalisation for the 
damped oscillator of the Glauber coherent states, has been shown by Skagerstam (1977) 
to be a solution of the nonlinear Schrodinger equation. Hence, at  T = 0 the decay 
toward equilibrium takes place through a pure quantum state. 

One should note that the Markovian behaviour obtained at  T = 0 is a manifestation 
of the approximation built in the phenomenological model, since from the microscopic 
analysis (Ullersma 1966, Ruggiero and  Zannetti 1983) the exact process at  T=O is 
expected to be non-Markovian. In fact, the model holds in the weak coupling limit, 
which becomes inconsistent at T=O. It is, however, interesting that the transient 
behaviour predicted by the model at T = 0 can be put into relation with the treatment 
of quantum dissipative systems based on  the nonlinear Schrodinger equation. 

One of us (MZ) wishes to thank the IBM Zurich Research Laboratory for the hospitality 
extended to him during the final part of this work. 
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